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1.0 Introduction

The high-level connectionist project is concerned with the question of how the
representations and processes necessary for high-level symbolic tasks can be achieved
within the iterative and numeric style of computing supplied by neural networks. Our
final year this project has focused on the question of modularity. Traditionally,
connectionist networks are treated as a whole - information is dispersed throughout the
weights of the network, and the resulting distributed system leads to smooth
degradation, etc. Unfortunately, the lack of modularity in such networks also prevents
scaling.

Other connectionist researches have realized this problem, and responded by exploring
various connectionist architectures for modularity (e.g., Jacobs, Jordan, and Barto, 1990;
Nowlan & Hinton, 1991). In these works, however, the modularity is prespecified in
terms of a fixed network architecture, which depends on a centralized gating network.

An alternative approach to modularity is found in the design of autonomous robots, a
historically nontrivial control task. Brooks (1986, 1991) offers a task-based subsumptive
architecture which has achieved some impressive results. However, since machine
learning is not up to the task of evolving these systems, engineers of artificial animals
have embedded themselves in the design loop as the learning algorithm, and thus all
components of the system, as well as their interactions, must be carefully crafted by the
engineer (see, e.g., Connell, 1990).

Research aimed at replacing the engineer in these systems is at an early stage. For
example, Maes (1991) proposes an Agent Network Architecture which allows a modular
agent to learn to satisfy goals such as "relieve thirst"; however, she presumes detailed
high-level modules (such as "pick-up-cup" and "bring-mouth-to-cup"), and her system
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learns only the connections between these modules. A better approach would be to let
the modules and connectionist develop automatically in response to the demands of the
task.

2.0 Progress & Highlights

By combining Brooks' ideas of subsumption with traditional connectionist models of
modularity (Jacobs, Jordan, and Barto, 1990), we have developed a novel architecture in
which new modules can be added and trained with minimal disturbance to existing
connections. The result is ADDAM (or ADDitive ADaptive Modules), a modular
connectionist agent whose behavioral repertoire evolves as the complexity of the
environment is increased. When placed in a simulated world of ice, food, and blocks,
ADDAM exhibits complex behaviors due to the interactions of its simple modules, as
shown in Figure 1 (Saunders et al., 1992).
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Figure 1: Addam's emergent behavior in a complex environment, with graph showing the
activations of layers 0, 1, and 2.
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There is a distinct methodological difference between this work and that of Brooks. In
creating his agents, Brooks first performs a behavioral decomposition, but in
implementing each layer, he performs a functional decomposition of the type he himself
warns against (Brooks, 1991, p. 146). In training Addam, on the other hand, we first
perform a behavioral decomposition, and then let backpropagation decompose each
behavior appropriately. This automation significantly lessens the arbitrary nature of
behavior-based architectures which has thus far limited the import of Brooks' work to
cognitive science.

Our next goal was to take this one step further, by automating the behavioral
decomposition. In other words, we desired to have the modules evolve in response to
the demands of the task. To accomplish this, we needed a training mechanism more
robust than backpropagation, so we turned towards genetic algorithms (GAs). These
algorithms, based on principles adopted from natural selection, allow solutions to be
evolved which fit the requirements of an environment.

There is an extensive body of work applying GAs to evolving neural networks, but most
simply use GAs to set the weights for a fixed-structure network. Those that attempt to
evolve network structure do so in a very limited way. (See Schaffer, et al., 1992 for a good
overview.) Thus before applying GAs to network modularization, we first had to solve
the "generalized network acquisition" problem, i.e., the problem of acquiring both
network structure and weight values simultaneously. The result was GNARL, an
algorithm for GeNeralized Acquisition of Recurrent Links (Angeline, Saunders, and Pollack,
1993).

The power of GNARL is shown the Tracker task, described by Jefferson, et al. (1991). In
this problem, a simulated ant is placed on a two-dimensional toroidal grid that contains
a trail of food. The ant traverses the grid, eating in one time step any food it contacts. The
goal of the task is to maximize the number of pieces of food the ant eats within a
predefined allotted time. The trail of food used in the experiment (shown in Figure 2a)

High Level Connectionist Models
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was hand-crafted in the original study to be increasingly difficult for the evolving ants.

Move Turn Turn
forward left right No-op

Food No food

(a) (b)

Figure 2: The ant problem. (a) The trail is connected initially, but becomes progresivey more jagged and
wPnding, hence more difficult to follo. The underlyin 2-d grid is toroidal, so that poition P" is the ft break
in the trail. Positions indicate the two positins where the network of our first run behaves di ftly
fom the simple FSA Jefferson et al hand-crafted toerfonn this task. The ellipse indicates the 7 piecesmof.0 . that
the network of the second run failed toreach. (b) The semantics of the I/0 units for the ant network. simple
network "eats" 42 rc of fod before spinning endlessly in place at position P, illustrating a very deep hixal
minimum in the search space.

Following Jefferson, et al (1991), the ant is controlled by a network with two input nodes
and four output nodes, as shown in Figure 2b. The first input node denotes the presence
of food in the square directly in front of the ant; the second denotes the absence of food
in this same square, restricting the possible legal inputs to the network to (1, 0) or (0, 1).
Each of the four output units corresponds to a unique executable action - move forward,
turn left, turn right, or no-op. Each ant is in an implicit sense/act loop that repeatedly
sets the input activations of the network, computes the activations of the output nodes,
determines the output node with maximum activation and executes its associated action.
Every application of the sense/act loop is assumed to happen in a single time step. Once
a position with food is visited, the food is removed. The fitness function used in this task
is simply the number of grid positions cleared in 200 time steps.

In these experiments, we used a population of 100 networks. In the first run (2090
generations using 104,600 network evaluations), GNARL found a network (shown in
Figure 3b) that cleared 81 grid positions within the 200 time steps. When we allowed this
ant to run for an additional 119 time steps, it successfully cleared the entire trail.

High Level Connectionist Models



6

Move Left Right No-op

/ AD

ff ll t I

lit 0 IInece

* ~Food No food

(a) Wc

- - - - - ------- 
---- --

/ - - --- 4100 I

-- -- ----- -- -----

(b)

Figure 3: The Tracker Task, first run. (a) The best network in the initial pplto.Nds0&1aeipi
nodes 5-8 are output, and nodes 2-4 are hidden node. (b Network evolved bI GNL at200gnratins
Forward links are dashed; bidirwtional links & loo~~aesld h l bPAckLYn (ftro 200gnoer8ation)s.
dashed, but lighter than the others. This network cleas the trail ins39e' cs c eferson ta/ie
network structure for the Tracker task. pcs efme lsfx

3.0 Summlary and Conclusion

With the success Of GNARL at generalized network acquisition, we are now poised to

return to the question Of modularitY Although GAs are inherently nonmodulr
previous work in our lab has explored extending the capabilities of these algrihm

through modularization (Angeline & Pollack, 1992a, 1992b)- Springboarding from that
work, we plan on developing a modular version of GNARL, one that will freeze subsets
of nodes and weights during the evolution of the network. The modules developed by

Hfigh Level Connectionist Models
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this process will emerge in response to the demands of the task, and be free from the bias
4f user-specification that permeates other work in connectionist modularity.
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1. Introduction

Besides being a status report on the Soar project, Unified Theories of
Cognition is Allen Newell's attempt at directing the field of cognitive science
by example. Newell argues that his approach to "unification", which involves
the programmed extension of a single piece of software-architecture-as-
theory to as many psychological domains as possible, is the proper research
methodology for cognitive science today:

In this book I'm not proposing Soar as the unified theory of
cognition. Soar is, of course, an interesting candidate. With a
number of colleagues I am intent on pushing Soar as hard as I
can to make it into a viable unified theory. But my concern here
is that cognitive scientists consider working with some unified
theory of cognition. Work with ACT*, with CAPS, with Soar,
with CUTC, a connectionist unified theory of cognition. Just
work with some UTC. (p. 430)

Correspondence to: J.B. Pollack, Laboratory for Al Research, The Ohio State University,
2036 Neil Avenue, Columbus, OH 43210, USA. E-mail: pollack@cis.ohio-state.edu

*(Harvard University Press, Cambridge, MA, 1990); 549 pages

0004-3702/93/$ 06.00 @ 1993 - Elsevier Science Publishers B.V. All rights reserved
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Over the past decade, Newell and his colleagues at numerous universities
(including my own) have applied Soar to a number of different domains,
and have adopted a goal of making it toe the line on psychological results.
This is a very ambitious goal, and Newell knows it:

The next risk is to be found guilty of the sin of presumption.
Who am I, Allen Newell, to propose a unified theory of cognition
... Psychology must wait for its Newton. (p. 37)

Newell is clearly entitled by a life of good scientific works to write a book at
such a level and, in my opinion, it is the most substantial and impressive, by
far, of recent offerings on the grand unified mind. My entitlement to review
his book is less self-evident, however-who am I to stand in judgement over
one of the founding fathers of the field? And so I fear I am about to commit
the sin of presumption as well, and to compound it, moreover, with the sin
of obliqueness: Because my argument is not with the quality of Newell's
book, but with the direction he is advocating for cognitive science, I will not
review his theory in detail. Rather, I will adopt a bird's eye view and engage
only the methodological proposal. I will, however, belabor one small detail
of Newell's theory, its name, and only to use as my symbolic launching pad.

2. Artificial intelligence and mechanical flight

The origin of the name Soar, according to high-level sources within the
project, was originally an acronym for three primitive components of the
problem-space method. But shortly, these components were forgotten, leav-
ing the proper noun in their stead, a name which evokes -grand and glorious
things", and also puts us in mind of the achievement of mechanical flight,
Al's historical doppelganger.

Among those who had worked on the problem [of mechanical
flight] I may mention [da Vinci, Cayley, Maxim, Parsons, Bell,
Phillips, Lilienthal, Edison, Langley] and a great number of other
men of ability. But the subject had been brought into disrepute
by a number of men of lesser ability who had hoped to solve the
problem through devices of their own invention, which had all of
themselves failed, until finally the public was lead to believe that
flying was as impossible as perpetual motion. In fact, scientists
of the standing of Guy Lussac ... and Simon Newcomb ... had
attempted to prove it would be impossible to build a flying
machine that would carry a man. (Wright [25, p. 12]1

'This book is a reissued collection of essays and photographs about the Wright's research and
development process. It includes three essays by Orville Wright, and two interpretive essays by
Fred C. Kelly. Subsequent citations are to this edition.
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1 will leave the substitution of contemporary scientists to the reader.
Simply put, the analogy "Airplanes are to birds as smart machines will be to
brains", is a widely repeated Al mantra with several uses. One is to entice
consumers by reminding them of the revolution in warfare, transportation,
commerce, etc. brought about by mechanical flight. Another is to encourage
patience in those same consumers by pointing to the hundreds of years
of experimental work conducted before the success of mechanical flight! A
third is to chant it, eyes closed, ignoring the complex reality of biological
mechanism.

Although it is quite likely that the analogy between Al and mechanical
flight arose spontaneously in the community of Al pioneers, its earliest
written appearance seems to be in a "cold war for AI" essay by Paul Armer,
then of the Rand Corporation, in the classic collection Computers and
Thought:

Wliie it is true that Man wasted a good deal of time and effort
trying Lo build a flying machine that flapped its wings like a bird,
the important point is that it was the understanding of the law
of aerodynamic lift (even though the understanding was quite
imperfect at first) over an airfoil which enabled Man to build
flying macnines. A bird isn't sustained in the air by the hand
of God-natural laws govern its flight. Similarly, natural laws
govern what [goes on inside the head]. Thus I see no reason
why we won't be able to duplicate in hardware the very powerful
processes of association which the human brain has, once we
understand them. (Armer [1, p.398])

We all agree that once we understand how natural law governs what
goes on in the head, we will be able to mechanize thought, and will then
have the best scientific theory of cognition, which could be refined into
the technology for -general intelligence". But our field has basically ignored
natural law, and settled comfortably upon methodologies and models which
involve only the perfect simulation of arbitrary "software" laws. I believe
that we are failing to integrate several key principles which govern cognition
and action in biological and physical systems, and that the incorpoiation of
these should be the priority of cognitive science rather than of the writing
of large programs.

3. Deconstructing the myths of mechanical flight

There are two myths in Armer's analogy which are important to correct.
The first is that flight is based mainly upon the principle of the airfoil. The
second is that the mechanical means by which nature solved the problem are
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irrelevant. Translating through the analogy, these two myths are equivalent
to believing that cognition is based mainly upon the principle of universal
computation, and that the mechanical means by which nature solved the
problem are irrelevant.

Although my favorite sections of Newell's book are those in which he
emphasizes the importance of constraints from biology and physics, he
conducts his research in a way which is consistent with the myths. Indeed
the myths are principally supported by his arguments, both the Physical
Symbol System Hypothesis [17], which is the assertion that Universal
Computation is enough, and the Knowledge Level Hypothesis (161, which
legitimizes theories involving only software laws, even though their very
existence is based only upon introspection.

In order to see why these myths are a stumbling block to the achievement
of mechanical cognition, I will examine several aspects of the solution to
mechanical flight, using the reports by Orville Wright.

3.1. The airfoil principle

The principle of aerodynamic lift over an airfoil was around for hundreds
of years before the advent of mechanical flight. The Wright brothers just
tuned the shape to optimize lift:

The pressures on squares are different from those on rectangles,

circles, triangles or ellipses; arched surfaces differ from planes.
and vary among themselves according to the depth of curvature;
true arcs differ from parabolas, and the latter differ among them-
selves; thick surfaces from thin ... the shape of an edge also
makes a difference, so thousands of combinations are possible
in so simple a thing as a wing .... Two testing machines were
built [and] we began systematic measurements of standard sur-
faces, so varied in design as to bring out the underlying causes
of differences noted in their pressures (Wright [25, p. 84])

Assume that the principle of Universal Computation is to Al what the
principle of aerodynamic lift is to mechanical flight. In Chapter 2 of this
book, Newell reiterates, in some detail, the standard argument for the status
quo view of cognition as symbolic computation:

"* Mind is flexible, gaining power from the formation of indefinitely rich
representations" and an ability to compose transformations of these
representations. (pp. 59-63).

"* Therefore mind must be a universal symbol processing machine (pp. 70-
71).

"* It is believed that most universal machines are equivalent (p. 72).

r • . . II
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If one holds that the flexibility of the mind places it in the same class
as the other universal machines (subject to physical limits, of course), then
the mathematics tells us we can use any universal computational model
for describing mind or its subparts (and the biological path is irrelevant).
So, for example, any of the four major theories of computation developed
(and unified) this century-Church's lambda calculus, Post's production
system, Von Neumann's stored program machine, and universal automata
(e.g. Turing's Machine)-could be used as a basis for a theory of mind.
Of course, these theories were too raw and difficult to program, but have
evolved through human ingenuity into their modern equivalents, each of
which is a "Universal Programming Language" (UPL): LISP, OPS5, C, and
ATN's, respectively.

If we plan to express our UTCs in UPLs, however, we must have a way
to distinguish between these UPLs in order to put some constraints on our
UTCs, so that they aren't so general as to be vacuous. There are at least
five general strategies to add constraints to a universal system: architecture,
tradition, extra-disciplinary goals, parsimony, and ergonomics.

The first way to constrain a UPL is to build something, anything, on top
of it, which constrains either what it can compute, how well it can compute
it, or how it behaves while computing it. This is called architecture, and
Newell spends pages 82-88 discussing architecture in some detail. In a
universal system, one can build architecture on top of architecture and shift
attention away from the basic components of the system to arbitrary levels
of abstraction.

The second method of constraining a universal theory is by sticking to
"tradition", the practices whose success elevates them to beliefs handed
down orally though the generations of researchers. Even though any other
programming language would serve, the tradition in American Al is to build
systems from scratch, using LISP, or to build knowledge into production
systems. Newell is happy to represent the "symbolic cognitive psychology"
tradition (p. 24) against the paradigmatic revolutions like Gibsonianism
(101 or PDPism [211.

A third way we can distinguish between competing universals is to
appeal to scientific goals outside of building a working program. We
can stipulate, for example, that the "most natural" way to model a phe-
nomenon in the UPL must support extra-disciplinary goals. Algorithmic
efficiency, a goal of mainstream computer science, can be used to dis-
criminate between competing models for particular tasks. Robust data
from psychological experiments can be used to discriminate among uni-
versal theories on the basis of matching an implemented system's natural
behavior with the observed data from humans performing the task. Fi-
nally, as a subset of neural network researchers often argue, the model
supporting the theory must be "biologically correct". Newell, of course,
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relies very heavily on the psychological goals to justify his particular
UPL.

Fourth, parsimony can be called into play. Two theories can be compared
as to the number of elements, parameters, and assumptions needed to explain
certain phenomena, and the shorter one wins. Newell makes a good point
that the more phenomena one wishes to explain, the more benefit is gained
from a unified theory, which ends up being shorter than the sum of many
independent theories. This is called "amortization of theoretical constructs"
(p. 22) and is one of Newell's main arguments for why psychologists ought to
adopt his unified theory paradigm for research. However, such a unification
can be politically difficult to pull off when different subdisciplines of a field
are already organized by the parsimony of their own subtheories.

Fifth, we might be able to choose between alternatives on the basis of
ergonomics. We can ask the question of programmability. How easy is it
to extend a theory by programming? How much work is it for humans to
understand what a system is doing? The Turing Machine model "lost" to the
stored program machine due to the difficulty of programming in quintuples.
Systems which use explicit rules rather than implicit knowledge-as-code are
certainly easier to understand and debug, but may yield no more explanatory
power.

However, unless the constraints specifically strip away the universality.
such that the cognitive theory becomes an application of rather than an
extension to the programming language, the problem of theoretical under-
constraint remains. Following Newell's basic argument, one could embark
on a project of extensively crafting a set of cognitive models in any program-
ming language, say C+ +, matching psychological regularities, and reusing
subroutines as much as possible, and the resultant theory would be as
predictive as Soar:

Soar does not automatically provide an explanation for anything
just because it is a universal computational engine. There are two
aspects to this assertion. First from the perspective of cognitive
theory, Soar has to be universal, because humans themselves are
universal. To put this the right way around-Soar is a universal
computational architecture; therefore it predicts that the human
cognitive architecture is likewise universal. (p. 248)

Thus, just as the Wright brothers discovered different lift behaviors in
differently shaped airfoils, cognitive modelers will find different behavioral
effects from different universal language architectures. The principle of the
airfoil was around for hundreds of years. and yet the key to mechanical
flight did not lie in optimizing lift. Using a UPL which optimizes -cognitive
lift" is not enough either, as practical issues of scale and control will still

assert themselves.
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3.2. Scaling laws

Our first interest (in the problem of flight] began when we were
children. Father brought home to us a small toy actuated by a
rubber [band] which would lift itself into the air. We built a
number of copies of this toy, which flew successfully, but when
we undertook to build a toy on a much larger scale it failed to
work so well. (Wright [25, p. I I ])

The youthful engineers did not know that doubling the size of a model
would require eight times as much power. This is the common feeling of
every novice computer programmer hitting a polynomial or exponential
scaling problem with an algorithm. But there were many other scaling
problems which were uncovered during the Wrights' mature R&D effort,
beyond mere engine size:

We discovered in 1901 that tables of air pressures prepared by
our predecessors were not accurate or dependable. (Wright [25,
p. 551)

We saw that the calculations upon which all flying-machines had
been based were unreliable, and that all were simply groping in
the dark. Having set out with absolute faith in the existing scien-
tific data, we were driven to doubt one thing after another ....
Truth and error were everywhere so intimately mixed as to be
indistinguishable. (Wright [25, p. 841)

Thus it is not unheard of for estimates of scaling before the fact to be
way off, especially the first time through based upon incomplete scientific
understanding of the important variables. Estimates of memory size [ 12,13]
for example, or the performance capacity of a brain [ 15,241 may be way off,
depending on whether memory is "stored- in neurons, synapses, or in modes
of behaviors of those units. So the number of psychological regularities we
need to account for in a UTC may be off:

Thus we arrive at about a third of a hundred regularities about
[typing] alone. Any candidate architecture must deal with most
of these if it's going to explain typing .... Of course there is no
reason to focus on typing. It is just one of a hundred specialized
areas of cognitive behavior. It takes only a hundred areas at thirty
regularities per area to reach the -3000 total regularities cited
at the beginning of this chapter .... Any architecture, especially a
candidate for a unified theory of cognition, must deal with them
all-hence with thousands of regularities. (p. 243)
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There is a serious question about whether thousands of regularities are
enough, and Newell recognizes this:

In my view its it time to get going on producing unified theories
of cognition-before the data base doubles again and the number
of visible clashes increases by the square or cube. (p. 25)

While Newell estimates 3000 regularities, my estimate is that the number
of regularities is unbounded. The "psychological data" industry is a gener-
ative system, linked to the fecundity of human culture, which Newell also
writes about lucidly:

What would impress [The Martian Biologist] most is the ef-
florescence of adaptation. Humans appear to go around simply
creating opportunities of all kinds to build different response
functions. Look at the variety of jobs in the world. Each one
has humans using different kinds of response functions. Humans
invent games. They no sooner invent one game than they invent
new ones. They not only invent card games, but they collect them
in a book and publish them .... Humans do not only eat, as do
all other animals, they prepare their food ... inventing [hundreds
and thousands of] recipes. (p. 114)

Every time human industry pops forth with a new tool or artifact, like
written language, the bicycle, the typewriter, Rubik's cube, or rollerblades,
another 30 regularities will pop out, especially if there is a cost justification
to do the psychological studies, as clearly was the case for typing and for
reading. This is not a good situation, especially if programmers have to be
involved for each new domain. There will be a never-ending software battle
just to keep up:

Mostly, then, the theorist will load into Soar a program (a col-
lection of productions organized into problem spaces) of his or
her own devising.. .The obligation is on the theorist to cope with
the flexibility of human behavior in responsible ways. (Newell,
p. 249)

If the road to unified cognition is through very large software efforts, such
as Soar, then we need to focus on scalable control laws for software.

3.3. Control in high winds

Although we might initially focus on the scaling of static elements like
wing span and engine power, to duplicate the success of mechanical flight, we
should focus more on the scaling of control. For the principal contribution
of the Wright brothers was not the propulsive engine, which had its own
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economic logic (like the computer), nor the airfoil, a universal device they
merely tuned through experiments, but their insight about how to control a
glider when scaled up enough to carry an operator:

Lilienthal had been killed through his inability to properly balance
his machine in the air. Pilcher, an English experimenter had met
with a like fate. We found that both experimenters had attempted
to maintain balance merely by the shifting of the weight of their
bodies. Chanute and all the experimenters before 1900, used this
same method of maintaining the equilibrium in gliding flight.
We at once set to work to devise a more efficient means of
maintaining the equilibrium .... It was apparent that the [left
and right] wings of a machine of the Chanute double-deck type,
with the fore-and-aft trussing removed, could be warped ... in
flying ... so as to present their surfaces to the air at different
angles of incidences and thus secure unequal lifts .... (Wright
[2 5, p. 12])

What they devised, and were granted a monopoly on, was the Aileron
principle, the general method of maintaining dynamical equilibrium in a
glider by modifying the shapes of the individual wings, using cables, to
provide different amounts of lift to each side. (It is not surprising that the
Wright brothers were bicycle engineers, as this control principle is the same
one used to control two wheeled vehicles-iterated over-correction towards
the center.)

Translating back through our analogy, extending a generally intelligent
system for a new application by human intervention in the form of pro-
gramming is "seat of the pants" control, the same method that Lilienthal
applied to maintaining equilibrium by shifting the weight of his body.

Just as the source of difficulty for mechanical flight was that scaling the
airfoil large enough to carry a human overwhelmed that human's ability
to maintain stability, the source of difficulty in the software engineering
approach to unified cognition is that scaling software large enough to explain
cognition overwhelms the programming teams' ability to maintain stability,

It is well known that there are limiting factors to software engineering [ 5],
and these limits could be orders of magnitude below the number of "lines
of code" necessary to account for thousands of psychological regularities or
to achieve a "general intelligence". Since software engineers haven't figured
out how to build and maintain programs bigger than 10-100 million lines
of code, why should people in Al presume that it can be done as a matter
of course? [71.

What is missing is some control principle for maintaining dynamical
coherence of an ever-growing piece of software in the face of powerful winds
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of change. While I don't pretend to have the key to resolving the software
engineering crisis, I believe its solution may rest with building systems
from the bottom up using robust and stable cooperatives of goal-driven
modules locked into long-term prisoner's dilemmas [2], instead of through
the centralized planning of top-down design. The order of acquisition of
stable behaviors can be very important to the solution of hard problems.

3.4. On the irrelevancy of flapping

Learning the secret of flight from a bird was a good deal like
learning the secret of magic from a magician. After you know the
trick and know what to look for, you see things that you did not
notice when you did not know exactly what to look for. (Wright
(attributed) [25, p. 5])

When you look at a bird flying, the first thing you see is all the flapping.
Does the flapping explain how the bird flies? Is it reasonable to theorize
that flapping came first, as some sort of cooling system which was recruited
when flying became a necessity for survival? Not really, for a simpler
explanation is that most of the problem of flying is in finding a place
within the weight/size dimension where gliding is possible, and getting the
control system for dynamical equilibrium right. Flapping is the last piece,
the propulsive engine, but in all its furiousness, it blocks our perception that
the bird first evolved the aileron principle. When the Wrights figured it out,
they saw it quite clearly in a hovering bird.

Similarly, when you look at cognition, the first thing you see is the
culture and the institutions of society, human language, problem solving,
and political skills. Just like flapping, symbolic thought is the last piece, the
engine of social selection, but in all its furiousness it obscures our perception
of cognition as an exquisite control system competing for survival while
governing a very complicated real-time physical system.

Once you get a flapping object, it becomes nearly impossible to hold it
still enough to retrofit the control system for equilibrium. Studying problem
solving and decision making first because they happen to be the first thing
on the list (p. 16) is dangerous, because perception and motor control may
be nearly impossible to retrofit into the design.

This retrofit question permits a dissection of the "biological correctness"
issue which has confounded the relationship between Al and connectionism.
The naive form, which applied to work in computational neuroscience but
not to Al, is -ontogenetic correctness", the goal of constructing one's model
with as much neural realism as possible. The much deeper form, which could
be a principle someday, is "phylogenetic correctness", building a model
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which could have evolved bottom up, without large amounts of arbitrary
top-down design. Phylogenetically correct systems acquire their behaviors
in a bottom-up order that could, theoretically, recapitulate evolution or be
" reconverged" upon by artificial evolution. Thus, while the airplane does not
flap or have feathers, the Wrights' success certainly involved "recapitulation"
of the phylogenetic order of the biological invention of flight: the airfoil,
dynamical balance, and then propulsion.

4. Physical law versus software law

By restricting ourselves to software theories only, cognitive scientists might
be expending energy on mental ornithopters. We spin software and logic
webs endlessly, forgetting every day that there is no essential difference
between Fortran programs and LISP programs, between sequential programs
and production systems, or ultimately, between logics and grammars. All
such theories rely on "software law" rather than the natural law of how
mechanisms behave in the universe.

Software laws, such as rules of predicate logic, may or may not have
existed before humans dreamed them up. And they may or may not have
been "implemented" by minds or by evolution. What is clear is that such
laws can be created ad infinitun, and then simulated and tested on our
physical symbol systems: The computer simulation is the sole guaranteed
realm of their existence.

An alternative form of unification research would be to unify cognition
with nature. In other words, to be able to use the same kind of natural laws
to explain the complexity of form and behavior in cognition, the complexity
of form and behavior in biology, and the complexity of form and behavior
in inanimate mechanisms.

I realize this is not currently a widely shared goal, but by applying
Occam's razor to "behaving systems" on all time scales (p. 152) why not
use the ordinary equations of physical systems to describe and explain the
complexity and control of all behavior? In an illuminating passage, Newell
discusses control theory:

To speak of the mind as a controller suggests immediately the
language of control systems-of feedback, gain, oscillation, damp-
ing, and so on. It is a language that allows us to describe systems
as purposive. But we are interested in the full range of human
behavior, not only walking down a road or tracking a flying bird,
but reading bird books, planning the walk, taking instruction to
get to the place, identifying distinct species, counting the new
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additions to the life list of birds seen, and holding conversations
about it all afterward. When the scope of behavior extends this
broadly, it becomes evident that the language of control systems
is really locked to a specific environment and class of tasks-to
continuous motor movement with the aim of pointing or follow-
ing. For the rest it becomes metaphorical. (p. 45)

I think Newell has it backwards. It is the language of symbol manipulation
which is locked to a specific environment of human language and deliber-
ative problem solving. Knowledge level explanations only metaphorically
apply to complex control systems such as insect and animal behavior [4,6],
systems of the body such as the immune or circulatory systems, the genetic
control of fetal development, the evolutionary control of populations of
species, cooperative control in social systems, or even the autopoetic control
system for maintaining the planet. Certainly these systems are large and
complex and have some means of self-control while allowing extreme cre-
ativity of behavior, but the other sciences do not consider them as instances
of universal computing systems running software laws, divorced from the
physical reality of their existence!

We have been led up the garden path of theories expressed in rules
and representations because simple mathematical models, using ordinary
differential equations, neural networks, feedback control systems, stochastic
processes, etc. have for the most part been unable to describe or explain the
generativity of structured behavior with unbounded dependencies. especially
with respect to language [8]. This gulf between what is needed for the
explanation of animal and human cognitive behavior and what is offered by
ordinary scientific theories is really quite an anomaly and indicates that our
understanding of the principles governing what goes on in the head have
been very incomplete.

But where might governing principles for cognition come from besides
computation? The alternative approach I have been following over the past
several years has emerged from a simple goal to develop neural network
computational theories which gracefully admit the generative and repre-
sentational competance of symbolic models. This approach has resulted in
two models [18,19] with novel and interesting behaviors. In each of these
cases, when pressed to the point of providing the same theoretical capacity
as a formal symbol system, I was forced to interpret these connectionist
networks from a new point of view, involving fractals and chaos-a dy-
namical view of cognition, more extreme than that proposed by Smolensky
[23]. 1 have thus been lead to a very different theoretical basis for under-
standing cognition, which I will call the "Dynamical Cognition Hypothesis",
that:
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The recursive representational and generative capacities required
for cognition arise directly out of the complex behavior of non-
linear dynamical systems.

In other words, neural networks are merely the biological implementation
level for a computation theory not based upon symbol manipulation, but
upon complex and fluid patterns of physical state. A survey of cognitive
models based upon nonlinear dynamics is beyond this review [201, however,
I can briefly point to certain results which will play an important role in
this alternative unification effort.

Research in nonlinear systems theory over the past few decades has de-
veloped an alternative explanation for the growth and control of complexity
I11]. Hidden within the concept of deterministic "chaotic" systems which
are extremely sensitive to small changes in parameters is the surprise that
precise tuning of these parameters can lead to the generation of structures
of enormous apparent complexity, such as the famous Mandelbrot set [ 14].

There is a clear link between simple fractals, like Cantor dust, and rewrit-
ing systems ("remove the middle third of each line segment"), and Barnsley
has shown how such recursive structures can be found in the limit behavior
of very simple dynamical systems [3 ]. The very notion of a system having a
"fractional dimension" is in fact the recognition that its apparent complexity
is governed by a "power law" [22].

The equations of motion of nonlinear systems are not different in kind
from those of simpler physical systems, but the evoked behavior can be very
complicated, to the point of appearing completely random. Even so, there
are "universal" laws which govern these systems at all scales, involving where
and when phase transitions occur and how systems change from simple to
complex modes, passing through "critical" states, which admit long-distance
dependencies between components.

The logistic map x,,I = kx, (I - xj) is a well-studied example of a simple

function iterated over the unit line where changes in k (between 0 and 4)
lead to wildly different behaviors, including convergence, oscillation, and
chaos. In a fundamental result, Crutchfield and Young have exhaustively
analyzed sequences of most significant bits generated by this map 2 and have
shown that at critical values of k, such as 3.5699, these bit sequences have
unbounded dependencies, and are not describable by a regular grammar,
but by an indexed context-free grammar [9].

Without knowing where complex behavior comes from, in the logistic
map, in critically tuned collections of neural oscillators, or in the Mandelbrot
set, one could certainly postulate a very large rule-based software system,

2 They analyzed the bit string y, = floor(O.5 + x0).
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operating omnipotently behind the scenes, like a deity whose hand governs
the fate of every particle in the universe.

5. Conclusion

I want to conclude this review with a reminder to the reader to keep in
mind the -altitude" of my criticism, which is about the research methodology
Newell is proposing based upon the status quo of myths in Al, and not
about the detailed contents of the book. These are mature and illuminated
writings, and Newell does an excellent job of setting his work and goals into
perspective and recognizing the limitations of his theory, especially with
respect to the puzzles of development and language.

Despite my disagreement with Newell's direction, I was educated and
challenged by the book, and endorse it as an elevator for the mind of all
students of cognition. But still, I would warn the aspiring cognitive scientist
not to climb aboard any massive software engineering efforts, expecting to
fly:

You take your seat at the center of the machine beside the
operator. He slips the cable, and you shoot forward .... The
operator moves the front rudder and the machine lifts from the
rail like a kite supported by the pressure of the air underneath
it. The ground is first a blur, but as you rise the objects become
clearer. At a height of 100 feet you feel hardly any motion at
all. except for the wind which strikes your face. If you did not
take the precaution to fasten your hat before starting, you have
probably lost it by this time .... (Wright. [25, p. 86])
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Abstract
Standard methods for inducing both the structure and weight values of recurrent neural
networks fit an assumed class of architectures to every task. This simplification is neces-
sary because the interactions between network structure and function are not well under-
stood. Evolutionary computation, which includes genetic algorithms and evolutionary
programnting, is a population-based search method that has shown promise in such com-
plex tasks. This paper argues that genetic algorithms are inappropriate for network acqui-
sition and describes an evolutionary program, called GNARL, that simultaneously
acquires both the structure and weights for recurrent networks. This algorithm's empirical
acquisition method allows for the emergence of complex behaviors and topologies that are
potentially excluded by the artificial architectural constraints imposed in standard network
induction methods.

1.0 Introduction

In its complete form, network induction entails both parametric and structural learning [1],
i.e., learning both weight values and an appropriate topology of nodes and links. Current methods
to solve this task fall into two broad categories. Constructive algorithms initially assume a simple
network and add nodes and links as warranted [2-8], while destructive methods start with a large
network and prune off superfluous components [9-12]. Though these algorithms address the prob-
lem of topology acquisition, they do so in a highly constrained manner. Because they monotoni-
cally modify network structure, constructive and destructive methods limit the traversal of the
available architectures in that once an architecture has been explored and determined to be insuf-
ficient, a new architecture is adopted, and the old becomes topologically unreachable. Also, these
methods often use only a single predefined structural modification, such as "add a fully connected
hidden unit," to generate successive topologies. This is a form of structural hill climbing, which is
susceptible to becoming trapped at structural local minima. In addition, constructive and destruc-
tive algorithms make simplifying architectural assumptions to facilitate network induction. For
example, Ash [2] allows only feedforward networks; Fahlman [6] assumes a resaicted form of
recurrence, and Chen et al. [7] explore only fully connected topologies. This creates a situation in
which the task is forced into the architecture rather than the architecture being fit to the task.
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These deficiencies of constructive and destructive methods stem from inadequate methods for
assigning credit to structural components of a network. As a result, the heuristics used are overly-
constrained to increase the likelihood of finding any topology to solve the problem. Ideally, the
constraints for such a solution should come from the task rather than be implicit in the algorithm.

This paper presents GNARL, a network induction algorithm that simultaneously acquires both
network topology and weight values while making minimal architectural restrictions and avoiding
structural hill climbing. The algorithm, described in section 3, is an instance of evolutionary pro-
gramming [13, 14], a class of evolutionary computation that has been shown to perform well at
function optimization. Section 2 argues that this class of evolutionary computation is better suited
for evolving neural networks than genetic algorithms [ 15, 16], a more popular class of evolution-
ary computation. Finally, section 4 demonstrates GNARL's ability to create recurrent networks
for a variety of problems of interest.

2.0 Evolving Connectionist Networks

Evolutionary computation provides a promising collection of algorithms for structural and
parametric learning of recurrent networks [171. These algorithms are distinguished by their reli-
ance on a population of search space positions, rather than a single position, to locate extrema of a
function defined over the search space. During one search cycle, or generation, the members of
the population are ranked according to a fitness function, and those with higher fitness are proba-
bilistically selected to become parents in the next generation. New population members, called
offspring, are created using specialized reproduction heuristics. Using the population, reproduc-
tion heuristics, and fitness function, evolutionary computation implements a nonmonotonic search
that performs well in complex multimodal environments. Classes of evolutionary computation
can be distinguished by examining the specific reproduction heuristics employed.

Genetic algorithms (GAs) [15, 16] are a popular form of evolutionary computation that rely
chiefly on the reproduction heuristic of crossover.1 This operator forms offspring by ,ecombining
representational components from two members of the population without regard to content. This
purely structural approach to creating novel population members assumes that components of all
parent representations may be freely exchanged without inhibiting the search process.

Various combinations of GAs and connectionist networks have been investigated. Much
research concentrates on the acquisition of parameters for a fixed network architecture (e.g., [ 18 -
211). Other work allows a variable topology, but disassociates structure acquisition from acquisi-
tion of weight values by interweaving a GA search for network topology with a traditional para-
metric training algorithm (e.g., backpropagation) over weighits (e.g., [22, 23]). Some studies
attempt to coevolve both the topology and weight values within the GA framework, but as in the
connectionist systems described above, the network architectures are restricted (e.g., [24 - 26]). In
spite of this collection of studies, current theory from both genetic algorithms and connectionism
suggests that GAs are not well-suited for evolving networks. In the following section, the reasons
for this mismatch are explored.

1. Genetic algorithms also employ oher operauors to manipulate the population, including a form of mutation, but
their distinguishing feature is a heavy reliance on crossover.
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Figure 2. The compting convenion problem (29). Bit strings A and B map to stunarafl and ~on~puatnaolly

is likely to produce an offspring that contains multiple copies of the same hidden node, yielding a network with
less com~ptational ability than either parent.

the task into an architecture). Moreover, the benefits of having a dual representation hinge on
crossover being an appropriate evolutionary operator for the task for some particular interpreta-
tion function; otherwise, the need to translate between dual representations is an unnecessary
complication.

Characterizing tasks for which crossover is a beneficial operator is an open question. Current
theory suggests that crossover will tend to recombine short, connected substrings of the bit string
representation that correspond to above-average task solutions when evaluated [16, 15]. These

substrings are called building blocks, making explicit the intuition that larger structures with high
fitness are built out of smaller structures with moderate fitness. Crossover tends to be most effec-
tive in environments where the fioess of a member of the population is reasonably correlated with

the expected ability of its representational components [27]. Environments where this is not true
are called deceptive [28].

There are three forms of deception when using crossover to evolve connectionist networks.
The first involves networks that share both a common topology and common weights. Because
the interpretation function may be many-to-one, two such networks need not have the same bit
string representation (see Figure 2). Crossover will then tend to create offspring that contain
repeated components, and lose the computational ability of some of the parents' hidden units. The
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resulting networks will tend to perform worse than their parents because they do not possess key
computational components for the task. Schaffer et al. [291 term this the competing conventions
problem, and point out that the number of competing conventions grows exponentially with the
number of hidden units.

The second form of deception involves two networks with identical topologies but different
weights. It is well known that for a given task, a single connectionist topology affords multiple
solutions for a task, each implemented by a unique distributed representation spread across the
hidden units [30, 31]. While the removal of a small number of nodes has been shown to effect
only minor alterations in the performance of a trained network [30, 31], the computational role
each node plays in the overall representation of the task solution is determined purely by the pres-
ence and strengths of its interconnections. Furthermore, there need be no correlation between dis-
tinct distributed representations over a particular network architecture for a given task. This
seriously reduces the chance that an arbitrary crossover operation between distinct distributed
representations will construct viable offspring regardless of the interpretation function use&

Finally, deception can occur when the parents differ topologically. The types of distributed
representations that can develop in a network vary widely with the number of hidden units and the
network's connectivity. Thus, the distributed representations of topologically distinct networks
have a greater chance of being incompatible parents. This further reduces the likelihood that
crossover will produce good offspring.

In short, for crossover to be a viable operator when evolving networks, the interpretation func-
tion must somehow compensate for all the types of deceptiveness described above. This suggests
that the complexity of an appropriate interpretation function will more than rival the complexity
of the original learning problem. Thus, the prospect of evolving connectionist networks with
crossover appears limited in general, and better results should be expected with reproduction heu-
ristics that respect the uniqueness of the distributed representations. This point has been tacitly
validated in the genetic algorithm literature by a trend towards a reduced reliance on binary repre-
sentations when evolving networks (e.g. [32, 33]). Crossover, however, is still commonplace.

2.2 Networks and Evolutionary Programming

Unlike genetic algorithms, evolutionary programming (EP) [14,34] defines representation-
dependent mutation operators that create offspring within a specific locus of the parent (see Figure
3). EP's commitment to mutation as the sole reproductive operator for searching over a space is
preferable when there is no sufficient calculus to guide recombination by crossover, or when sep-
arating the search and evaluation spaces does not afford an advantage.

Relatively few previous EP systems have addressed the problem of evolving connectionist
networks. Fogel et al. [35] investigate training feedforward networks on some classic connection-
ist problems. McDonnell and Waagen [36] use EP to evolve the connectivity of feedforward net-
works with a constant number of hidden units by evolving both a weight matrix and a
connectivity matrix. Fogel [14], [37] uses EP to induce three-layer fully-connected feedforward
networks with a variable number of hidden units that employ good strategies for playing Tic-Tac-
Toe.
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Figure 3. The evolutionary programming approach to modeling evolution. Unlike genetic algorithms.
evolutionary programs perform search in the space of networks. Offspring created by mutation remain within a
locus of similarity to their parents.

In each of the above studies, the mutation operator alters the parameters of network T" by the
function:

w = w + N (0, ae(1I)) Vwe j (EQ 1)

where w is a weight, C(Ti) is the error of the network on the task (typically the mean squared
error), a is a user-defined proportionality constant, and N(p., 02) is a gaussian variable with mean
gI and variance 02. The implementations of structural mutations in these studies differ somewhat.
McDonnell and Waagen [36] randomly select a set of weights and alters their values with a prob-
ability based on the variance of the incident nodes' activation over the training set; connections
from nodes with a high variance having less of a chance of being altered. The structural mutation
used in [14, 37] adds or deletes a single hidden unit with equal probability

Evolutionary programming provides distinct advantages over genetic algorithms when evolv-
ing networks. First, EP manipulates networks directly, thus obviating the need for a dual represen-
tation and the associated interpretation function. Second, by avoiding crossover between
networks in creating offspring, the individuality of each network's distributed representation is
respected. For these reasons, evolutionary programming provides a more appropriate framework
for simultaneous structural and parametric learning in recurrent networks. The GNARL algo-
rithm, presented in the next section and investigated in the remainder of this paper, describes one
such approach.

3.0 The GNARL Algorithm

GNARL, which stands for GeNeralized Acquisition of Recurrent Links, is an evolutionary
algorithm that nonmonotonically constructs recurrent networks to solve a given task. The name
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Biasc)
mrin + b mout
input output
nodes •nodes

at most h,,
hidden nodes

Figure 4. Sample minal network The number of input nodes (m.,) and number of output nodes (md) is fixed
for a given task. The presence of a bias node (b - 0 or )) as well as the maximum number of hidden units (h,,.)
is set by the user. The initial connectivity is chosen randomly (see text). The disconnected hidden node does not
affect this particular network's computation, but is available as a resource for structural mutations.

GNARL reflects the types of networks that arise from a generalized network induction algorithm
performing both structural and parametric learning. Instead of having uniform or symmetric
topologies, the resulting networks have "gnarled" interconnections of hidden units which more
accurately reflect constraints inherent in the task.

The general architecture of a GNARL network is straightforward. The input and output nodes
are considered to be provided by the task and are immutable by the algorithm; thus each network
for a given task always has min input nodes and mout output nodes. The number of hidden nodes
varies from 0 to a user-supplied maximum hma=. Bias is optional; if provided in an experiment, it
is implemented as an additional input node with constant value one. All non-input nodes employ
the standard sigmoid activation function. Links use real-valued weights, and must obey three
restrictions:

RI: There can be no links to an input node.
R2: There can be no linksfrom an output node.
R3: Given two nodes x and y, there is at most one link from x to y.

Thus GNARL networks may have no connections, sparse connections, or full connectivity. Con-
sequently, GNARL's search space is:

S = (ql: i is a network with real-valued weights,
il satisfies R .R3,
11 has mrin + b input nodes, where b=l if a bias node is provided, and 0 otherwise,
ii has mouw output nodes,
1l has i hidden nodes, 0 : i:5 hmm)

R1-R3 are strictly implementational constraints. Nothing in the algorithm described below hinges
on S being pruned by these restrictions.

3.1 Selection, Reproduction and Mutation of Networks

GNARL initializes the population with randomly generated networks (see Figure 4). The
number of hidden nodes for each network is chosen from a uniform distribution over a user-sup-
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plied range. The number of initial links is chosen similarly from a second user-supplied range.
The incident nodes for each link are chosen in accordance with the structural mutations described
below. Once a topology has been chosen, all links are assigned random weights, selected uni-
formly from the range [-1, 1]. There is nothing in this initialization procedure that forces a node to
have any incident links, let alone for a path to exist between the input and output nodes. In the
experiments below, the number of hidden units for a network in the initial population was selected
uniformly between one and five and the number of initial links varied uniformly between one and
10.

In each generation of search, the networks are first evaluated by a user-supplied fitness func-
tion f. S -4 R, where R represents the reals. Networks scoring in the top 50% are designated as
the parents of the next generation; all other networks are discarded. This selection method is used
in many EP algorithms although competitive methods of selection have also been investigated
[14].

Generating an offspring involves three steps: copying the parent, determining the severity of
the mutations to be performed, and finally mutating the copy. Network mutations are separated
into two classes, corresponding with the types of learning discussed in [1]. Parametric mutations
alter the value of parameters (link weights) currently in the network, whereas structural mutations
alter the number of hidden nodes and the presence of links in the network, thus altering the space
of parameters.

3.1.1 Severity of Mutations

The severity of a mutation to a given parent, 71, is dictated by that network's temperature,
T(71):

T01j) = 1--) (EQ 2)fma

where fa is the maximum fitness for a given task. Thus, the temperature of a network is deter-
mined by how close the network is to being a solution for the task. This measure of the network's
performance is used to anneal the structural and parametric similarity between parent and off-
spring, so that networks with a high temperature are mutated severely, and those with a low tem-
perature are mutated only slightly (cf. [381). This allows a coarse-grained search initially, and a
progressively finer-grained search as a network approaches a solution to the task, a process
described more concretely below.

3.1.2 Parametric Mutation of Networks

Parametric mutations are accomplished by perturbing each weight w of a network rl with
gaussian noise, a method motivated by [37, 14]. In that body of work, weights are modified as fol-
lows:

w = w + N (0, aT(71)) VwE 71 (EQ 3)
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where a is a user-defined proportionality constant, and N(g, %2) is a gaussian random variable as
before. While large parametric mutations are occasionally necessary to avoid parametric local
minima during search, it is more likely they will adversely affect the offspring's ability to perform
better than its parent To compensate, GNARL updates weights using a variant of equation 3.
First, the instantaneous temperature t of the network is computed:

t( 1 ) = U(o, 1)T(TI) (EQ4)

where U(O, 1) is a uniform random variable over the interval [0, 1]. This new temperature, vary-
ing from 0 to T(71), is then substituted into equation 3:

w = w+N(O, at(Ti)) Vw6 11 (EQS)

In essence, this modification lessens the frequency of large parametric mutations without disal-
lowing them completely. In the experiments described below, a is one.

3.1.3 Structural Mutation of Networks

The structural mutations used by GNARL alter the number of hidden nodes and the connec-
tivity between all nodes, subject to restrictions RI-R3 discussed earlier. To avoid radical jumps in
fitness from parent to offspring, structural mutations attempt to preserve the behavior of a net-
work. For instance, new links are initialized with zero weight, leaving the behavior of the modi-
fied network unchanged. Similarly, hidden units are added to the network without any incident
connections. Links must be added by future structural mutations to determine how to incorporate
the new computational unit. Unfortunately, achieving this behavioral continuity between parent
and child is not so simple when removing a hidden node or link. Consequently, the deletion of a
node involves the complete removal of the node and all incident links with no further modifica-
tion to compensate for the behavioral change. Similarly, deleting a link removes that parameter
from the network.

The selection of which node to remove is uniform over the collection of hidden nodes. Addi-
tion or deletion of a link is slightly more complicated in that a parameter identifies the likelihood
that the link will originate from an input node or terminate at an output node. Once the class of
incident node is determined, an actual node is chosen uniformly from the class. Biasing the link
selection process in this way is necessary when there is a large differential between the number of
hidden nodes and the number of input or output nodes. This parameter was set to 0.2 in the exper-
iments described in the next section.

Research in [14] and [37] uses the heuristic of adding or deleting at most a single fully con-
nected node per structural mutation. Therefore, it is possible for this method is to become trapped
at a structural local minima, although this is less probable than in nonevolutionary algorithms
given that several topologies may be present in the population. In order to more effectively search
the range of network architectures, GNARL uses a severity of mutation for each separate struc-
tural mutation. A unique user-defined interval specifying a range of modification is associated
with each of the four structural mutations. Given an interval of [Amin, Aax] for a particular struc-
tural mutation, the number of modifications of this type made to an offspring is given by:
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Thus the number of modifications varies uniformly over a shrinking interval based on the parent
network's fitness. In the experiments below, the maximum number of nodes added or deleted was
three while the maximum number of links added or deleted was five. The minimum number for
each interval was always one.

3.2 Fitness of a Network

In evolving networks to perform a task, GNARL does not require an explicit target vector -
all that is needed is the feedback given by the fitness function f. But if such a vector is present, as
in supervised learning, there are many ways of transforming it into a measure of fitness. For
example, given a training set ((xl, yl), (x2, y2), ...- , three possible measures of fitness for a net-
work Tj are sum of square errors (equation 7), sum of absolute errors (equation 8), and sum of
exponential absolute errors (equation 9):

X (y, - Out (1, Xi) ) 2 (EQ 7)

S- O ut (n1, xj) j(EQ 8)

Y Q 9)

Furthermore, because GNARL explores the space of networks by mutation and selection, the
choice of fitness function does not alter the mechanics of the algorithm. To show GNARL's flexi-
bility, each of these fitness functions will be demonstrated in the experiments below.

4.0 Experiments

In this section, GNARL is applied to several problems of interest. The goal in this section is to
demonstrate the abilities of the algorithm on problems from language induction to search and col-
lection. The various parameter values for the program are set as described above unless otherwise
noted.

4.1 Wadlians' Trigger Problem

As an initial test, GNARL induced a solution for the enable-trigger task proposed in [39].
Consider the finite state generator shown in Figure 5. At each time step the system receives two
input bits, (a, b), representing "enable" and "trigger" signals, respectively. This system begins in
state S1, and switches to state S2 only when enabled by a=l. The system remains in S2 until it is
triggered by b=l, at which point it outputs I and resets the state to SI. So, for instance, on an input
stream ((0, 0), (0, 1), (1, 1), (0, 1)), the system will output (0, 0, 0, 1) and end in SI. This simple
problem allows an indefinite amount of time to pass between the enable and the trigger inputs;
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a-1 -4 output 0

a---0 --> b - 40 -

Start b-I=l --+ output 1
Flgure 5. An FSA that defines the enable-trigger task [39). Te system is given a data stream of bit pairs
((al. b1). (a2. b2), ...). and produces an output of V's and I's. To capture this system's input/output behavior, a
connectionist network must learn to store state indefinitely.

thus no finite length sample of the output stream will indicate the current state of the system. This
forces GNARL to develop networks that can preserve state information indefinitely.

The fitness function used in this experiment was the sum of exponential absolute errors (equa-
tion 9). Population size was 50 networks with the maximum number of hidden units restricted to
six. A bias node was provided in each network in this initial experiment, ensuring that an activa-
tion value of I was always available. Note that this does not imply that each node had a nonzero
bias; links to the bias node had to be acquired by structural mutation.

Training began with all two input strings of length two, shown in Tablel. After 118 genera-
tions (3000 network evaluations2), GNARL evolved a network which solved this task for the
strings in Table 1 within tolerance of 0.3 on the output units. The training set was then increased
to include all 64 input strings of length three and evolution of the networks was allowed to con-
tinue. After an additional 422 generations, GNARL once again found a suitable network. At this
point, the difficulty of the task was increased a final time by training on all 256 strings of length
four. After another 225 generations (-20000 network evaluations total) GNARL once again found
a network to solve this task, shown in Figure 6b. Note that there are two completely isolated
nodes. Given the fitness function used in this experiment, the two isolated nodes do not effect the
network's viability. To investigate the generalization of this network, it was tested over all 4096
unique strings of length six. The outputs were rounded off to the nearest integer, testing only the
network's separation of the strings. The network performed correctly on 99.5% of this novel set,
generating incorrect responses for only 20 strings.

Figure 7 shows the connectivity of the population member with the best fitness for each gener-
ation over the :ourse of the run. Initially, the best network is sparsely-connected and remains
sparsely-conne ted throughout most of the run. At about generation 400, the size and connectivity

2. Number of networks evaluated = IVopulationi + generations * Iopulationi * 50% of the population rmoved each
generation, giving 50 + 118 * 50 * 0.5 = 3000 network evaluations for Ibis trial.
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Bias Bias

0
(a) (b)

Figure 6. Connectivity of two recurrent networks found in the enable-trigger experiment. (a) The best network of
generation 1. (b) The best network of generation 765. This network solves the task for all strings of length eight.

increases dramatically only to be overtaken by the relatively sparse architecture shown in Figure
6b on the final generation. Apparently, this more sparsely connected network evolved more
quickly than the more full architectures that were best in earlier generations. The oscillations
between different network architectures throughout the run reflects the development of such com-
peting architectures in the population.

4.2 Inducing Regular Languages

A current topic of research in the connectionist community is the induction of finite state
automata (FSAs) by networks with second-order recurrent connections. For instance, Pollack [40]
trains sequential cascaded networks (SCNs) over a test set of languages, provided in [41] and

Target Target

Output Input Output

{(o,0 ), (0, 0)) (0,0) (, 0),(o, 0)) (00,0

P(o, ),(o, 1)A (0,0) oW (0), (0, 1) (0,1)

((0, 0), (1, 0)) (0,0) (, 0),(I,0 )) (0,0)

((0, 1), (0,0)) (0,0) (1, M ),(, 0)) (0,0)

((0, 1), (0, 1)) (0,0) M((, 1), (0, 1)) (0. 1)

Tablk 1. Initial training data for enable-trigger task.
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Figure 7. Diferent network topologies explored by GNARL during the first 540 generations on the enable-trigger
problem. The presence of a link between node i andj at generation g is indicated by a dot at posiion (g. 10 * i + j)
in the graph. Note that because node 3 is the output node. there are no connections from it throughout the run. The
arrow designates the point of transition between the first two training sets.

shown in Table 2, using a variation of backpropagation. An interesting result of this work is that
the number of states used by the network to implement finite state behavior is potentially infinite.
Other studies using the training sets in [41] have investigated various network architectures and
training methods, as well as algorithms for extracting FSAs from the trained architectures [42 -
45].

An explicit collection of positive and negative examples, shown in Table 3, that pose specific
difficulties for inducing the intended languages is offered in [41]. Notice that the training sets are
unbalanced, incomplete and vary widely in their ability to strictly define the intended regular lan-
guage. GNARL's ability to learn and generalize from these training sets was compared against the
training results reported for the second-order architecture used in [421. Notice that all the lan-
guages in Table 2 require recurrent network connections in order to induce the language com-
pletely. The type of recurrence needed for each language varies widely. For instance, languages I
through 4 require an incorrect input be remembered indefinitely, forcing the network to develop
an analog version of a trap state. Networks for language 6, however, must parse and count indi-
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Language Descriptdon

1 I1

2 (10)"

3 no odd length 0 strings anytime
after an odd length I string

4 no more than two Os in a row

5 an even sum of 10s and 0ls, pairwise

6 (number of ls - number of Os) mod 3 = 0

7 0*1*0"1"

Table 2. Regular languages to be induced.

vidual inputs, potentially changing state from accept to reject or vice versa on each successive

input.

The results obtained in [42] are summarized in Table 4. The table shows the number of net-
works evaluated to learn the training set and the accuracy of generalization for the learned net-

work to the intended regular language. Accuracy is measured as the percentage of strings of

Language Positive Instances Negative Instances

1, 1, 11,111, 1111, 11111, 111111, 1111111, 0, 10, 01, 00,011, 110, 000, 11111110,
111 111 10111111

e, 10, 1010, 101010, 10101010. 1, ,0 11, 00, 01, 101. 100, 1001010, 10110,10101010101010 110101010

10,.101,010, 1010, 110, 1011, 10001, 111010,
e, 1, 0, 01, 11, 00, 100, 110, 111,0000, 100100, 1001000, 11111000, 0111001101,
S110000011l00001, l11l01l00010011100 11 011100110

000, 11000, 0001, 000000000, 00000, 0000,4, 1,0, 10,01,00,100 001111110100, 11111000011, 1101010000010111,
01001001030, 11100, 010 1010010001

5 C1, 11,00, 001,0101, 1010, 1000111101, 1,0,111,010,0000000001,000,01,10,
1001100001111010, 111111,0000 1110010100, 010111111110,0001, Oi011

6 e, 10,01, 1100. 101010, 111,000000, 1,0, 11.00, 101,011, 11001, 1111,00000000,0111101111, 100100100 010111, 10111101111, 1001001001

7 r, 1,0, 10,01, 11111,000,00110011.0101, 1010, 00110011000, 0101010101, 1011010,
0000100001111,00100,011111011111,00 10101,010100, 101001, 100100110101

Tabl• 3. Training sets for the languages of Table 2 from (41).
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language Average Average % Fewest Best %

evaluations accuracy evaluations accuracy

1 3033.8 88.98 28 100.0

2 4522.6 91.18 807 100.0

3 12326.8 64.87 442 78.31

4 4393.2 42.50 60 60.92

5 1587.2 44.94 368 66.83

6 2137.6 23.19 306 46.21

7 29t 0 36.97 373 55.74

Table 4. Speed and generalization reszlts reported by [421for learning the data sets of Table 3.

length 10 or less that are correctly classified by the network. For comparison, the table lists both
the average and best performance of the five runs reported in [42,.

This experiment used a population of 50 networks, each limited to at most eight hidden units.
Each run lasted at most 1000 generations, allowing a maximum of 25050 networks to be evalu-
ated for a single data set. Two experiments were run for each data set, one using the sum of abso-
lute errors (SAE) and the other using sum of square errors (SSE). The error for a particular string
was computed only for the final output of the network after the entire string plus three trailing
"null" symbols had been entered, one input per time step. The concatenation of the trailing null
symbols was used to identify the end of the string and allow input of the null string, a method also
used in [421. Each network had a single input and output and no bias node was provided. The
three possible logical inputs for this task, 0, 1, and null, were represented by activations of -1, 1,
and 0, respectively. The tolerance for the output value was 0.1, as in [42].

Table 5 shows fo, both fitness functions the number of evaluations until convergence and the
accuracy of the best evolved network. Only four of the runs, each of those denoted by a '+' in the
table, failed to produce a network with the specified tolerance in the allotted 1000 generations. In
the runs using SAE, the two runs that did not converge had not separated a few elements of the
associated training set and appeared to be far from discovering a network that could correctly
classify the complete training set. Both of the uncompleted runs using SSE successfully separated
the data sets but had not done so to the 0.1 tolerance within the 1000 generation limit. Figure 8
compares the number of evaluations by GNARL to the average number of evaluations reported in
[421. As the graph shows, GNARL consistently evaluates more networks, but not a disproportion-
ate number. Considering that the space of networks being searched by GNARL is much larger
than the space being searched by [42], these numbers appear to be within a tolerable increase.

The graph of Figure 9compares the accuracy of the GNARL networks to the average accuracy
found in [421 over five runs. The GNARL networks consistently exceeded the average accuracy
found in [42).
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0 15000
15000 SAE fitness

S10000 - SSE fitness
M Result from [42]

5000

1 2 3 4 5 6 7

Training Set
Figure 8. The number of netwrork evaluations required to learn the seven data sets of Table 3. GNARL (using
both SAE and SSE fitness measures) compared to the average number of evaluations for the five runs described
in (421.

These results demonstrate GNARL's ability to simultaneously acquire the topology and
weights of recurrent networks, and that this can be done within a comparable number of network
evaluations as training a network with static architecture on the same task. GNARL also appears
to generalize better consistently, possibly due to its selective inclusion and exclusion of some
links.

Evaluations % Accuracy Evaluations % Accuracy
Language (SAE) (SAE) (SSE) (SSE)

1 3975 100.00 5300 99.27

2 5400 96.34 13975 73.33

3 25050" 58.87 18650 68.00

4 15775 92.57 21850 57.15

5 2505W' 49.39 22325 51.25

6 21475 55.59" 2500 44.11

7 12200 71.37 25050V 31.46

Table $. Speed and generalization resuLts for GNARL to train recurrent networks to recognie the data sets of
Table 3.
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Language
Figure 9. Percentage accuracy of evolved networks on languages in Table 2. GNARL (using SAE and SSE
fitness measures) compared to average accuracy of thefive runs in [42).

4.3 The Ant Problem

GNARL was tested on a complex search and collection task - the Tracker task described in
[46], and further investigated in [47]. In this problem, a simulated ant is placed on a two-dimen-
sional toroidal grid that contains a trail of food. The ant traverses the grid, collecting any food it
contacts along the way. The goal of the task is to discover an ant which collects the maximum
number of pieces of food in a given time period. (Figure 10).

Following [46], each ant is controlled by a network with two input nodes and four output
nodes (Figure 11). The first input node denotes the presence of food in the square directly in front
of the ant; the second denotes the absence of food in this same square, restricting the possible
legal inputs to the network to (1, 0) or (0, 1). Each of the four output units corresponds to a unique
action: move forward one step, turn left 90°, turn right 900, or no-op. At each step, the action
whose corresponding output node has maximum activation is performed. As in the original study
[46], no-op allows the ant to remain at a fixed position while activation flows along recurrent con-
nections. Fitness is defined as the number of grid positions cleared within 200 time steps. The task
is difficult because simple networks can perform surprisingly well; the network shown in Figure
11 collects 42 pieces of food before spinning endlessly at position A (in Figure 10), illustrating a
very high local maximum in the search space.

The experiment used a population of 100 networks, each limited to at most nine hidden units,
and did not provide a bias node. In the first run (2090 generations), GNARL found a network
(Figure 12b) that clears 81 grid positions within the 200 time steps. When this ant is run for an
additional 119 time steps, it successfully clears the entire trail. To understand how the network
traverses the path of food, consider the simple FSA shown in Figure 13, hand-crafted in (46] as an
approximate solution to the problem. This simple machine receives a score of 81 in the allotted
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Figure 10. The ant problem. The trail is connected initially. but becomes progressively more dficult to follow.
The wnderlying 2-d grid is toroidal, so that position "A" is the first break in the trail - it is smple to reach this
point. Postions "B" and "C" indicate the only two positions along the trail where the ant discovered in run 1
behaves differently from the 5-state FSA of1461 (see Figure 13).

200 time steps, and clears the entire trail only five time steps faster than the network in Figure
12b. A step by step comparison indicates there is only a slight difference between the two.
GNARL's evolved network follows the general strategy embodied by this FSA at all but two
places, marked as positions B and C in Figure 10. Here the evolved network makes a few addi-
tional moves, accounting for the slightly longer completion time.

Move Left Right No-op

Food No food
FIgure 11. The seman•s of the 1/0 units for the ant network. The first iwput node denotes the presence offood
in the square direcdy in front of the am: the second denotes the absence of food in this same square. This
partc ad. network finds 42 pieces offood bWfore spminng endlessly in place at position P. illustrating a very
deep local minimum in the search space.
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Fo NoFood/Right

Food/Move Food/Right •

Food/Move NoFR hght

NoFood/Move Fo• 'od/ ove Rih

Figure 13. FSA hand-crafted for the Tracker task in [461. The large arrow indicates the initial state. This
simple system implements the strategy "move forward i there is food infront of you. otherwise turn right four
times, looking for food. If food is found while turning, pursue it. otherwise, move forward one step and
repeat." This FSA traverses the entire trail in 314 steps, and gets a score of 81 in the allotted 200 time steps.

ure 14c are transients encountered as the network alternates between these attractors. The
differences in the number of steps required to clear the trail between the FSA of Figure 13 and
GNARL's network arise due to the state of the hidden units when transferring from the "food"
attractor to the "no food" attractor.

However, not all evolved network behaviors are so simple as to approximate an FSA [40]. In a
second run (1595 generations) GNARL induced a network that cleared 82 grid points within the
200 time steps. Figure 15 demonstrates the behavior of this network. Once again, the "food"
attractor, shown in Figure 15a, is a single point in the space that always executes "Move." The
"no food" behavior, however, is not an FSA; instead, it is a quasiperiodic trajectory of points
shaped like a "D" in output space (Figure 15b). The placement of the '"" is in the "Move / Right"
corner of the space and encodes a complex alternation between these two operations (see Figure
15d).

In contrast, research in [46] uses a genetic algorithm on a population of 65,536 bit strings with
a direct encoding to evolve only the weights of a neural network with five hidden units to solve
this task. The particular network architecture in (46] uses Boolean threshold logic for the hidden
units and an identity activation function for the output units. The first GNARL network was dis-
covered after evaluating a total of 104,600 networks while the second was found after evaluating
79,850. The experiment reported in [46] discovered a comparable network after about 17 genera-
tions. Given (46] used a population size of 65,536 and replaced 95% of the population each gener-
ation, the total number of network evaluations to acquire the equivalent network was 1,123,942.
This is 10.74 and 14.07 times the number of networks evaluated by GNARL in the two runs. In
spite of the differences between the two studies, this significant reduction in the number of evalu-
ations provides empirical evidence that crossover may not be best suited to the evolution of net-
works.
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Figr" 14. Limit behavior of the neto". dgat clears the trail in 319 steps. Graphs show the state of the output
units Move, Right. Left. (a) Fixed point attractor that results for sequence of'500 "food" signals: (b) Limit cycle
attractor that results when a sequence of 500 'n o food' signals is given to network: (c) All states visited while
traversing the tral; (d) The path of the ant on an empty grid. The Z axzs represents time. Note that x is fixed, and
y increases monotonically at a ftid rate. The large jumps in y position are arndfacts of the toroidal grid.

5.0 Conclusions

Allowing the task to specify an appropriate architecture for its solution should, in principle, be
the defining aspect of the complete network induction problem. By restricting the space of net-
works explored, constructive, destructive, and genetic algorithms only partially address the prob-
lem of topology acquisition. GNARL's architectural constraints R1 -R3 similarly reduce the search
space, but to a far less degree. Furthermore, none of these constraints is necessary, and their
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Figure 15. Limit behavior of the network of the second run. Graphs show the state of the output units Move.
Right, Lef. (a) Fixed point attractor that resits for sequence of 3500 "food" signals; (b) Limit cycle attractor
that results when a sequence of 3500 "no food" signals is given to network, (c) All states visited while
traversing the trai; (d) The path of the ant on an empty grid. The : aris represents time. The ant's path is
comprised of a set of "railroad tracks." Along each track, tick marks represent back and forth movement. At
the junctures between tracks, a more complicated movement occurs. There are no artifacts of the toroidal grid
in this plot, all are actual movements (4y. Figure 14d).

removal would affect only ease of implementation. In fact, no assumed features of GNARL's net-
works are essential for the algorithm's operation. GNARL could even use nondifferentiable acti-
vation functions, a constraint for backpropagation.

GNARL's minimal representational constraints would be meaningless if not complemented by
appropriate search dynamics to traverse the space of networks. First, unlike constructive and
destructive algorithms, GNARL permits a nonmonotonic search over the space of network topol-
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ogies. Consider that in monotonic search algorithms, the questions of when and how to modify
structure take on great significance because a premature topological change cannot be undone. In
contrast, GNARL can revisit a particular architecture at any point, but for the architecture to be
propagated it must confer an advantage over other competing topologies. Such a non-linear tra-
versal of the space is imperative for acquiring appropriate solutions because the efficacy of the
various architectures changes as the parametric values are modified.

GNARL allows multiple structural manipulations to a network within a single mutation. As
discussed earlier, constructive and destructive algorithms define a unit of modification, e.g., "add
a fully connected hidden node." Because such singular structural modifications create a "one-unit
structural horizon" beyond which no information is available, such algorithms may easily fixate
on an architecture that is better than networks one modification step away, but worse than those
two or more steps distant. In GNARL, several nodes and links can be added or deleted with each
mutation, the range being determined by user-specified limits and the current ability of the net-
work. This simultaneous modification of the structural and parametric modifications based on fit-
ness allows the algorithm to discover appropriate networks quickly especially in comparison to
evolutionary techniques that do not respect the uniqueness of distributed representations.

Finally, as in all evolutionary computation, GNARL maintains a population of structures dur-
ing the search. This allows the algorithm to investigate several differing architectures in parallel
while avoiding over-commitment to a particular network topology.

These search dynamics, combined with GNARL's minimal representational constraints make
the algorithm extremely versatile. Of course, if topological constraints ame known a priori, they
should be incorporated into the search. But these should be introduced as part of the task specifi-
cation rather than being built into the search algorithm. Because the only requirement on a fitness
function f is that f. S -+ R, diverse criteria can be used to rate a network's performance. For
instance, the first two experiments described above evaluated networks based on a desired input/
output mapping; the Tracker task experiment, however, considered overall network performance,
not specific mappings. Other criteria could also be introduced, including specific structural con-
straints (e.g., minimal number of hidden units or links) as well as constraints on generalization. In
some cases, strong task restrictions can even be implicit in simple fitness functions [48].

The dynamics of the algorithms guided by the task constraints represented in the fitness func-
tion allow GNARL to empirically determine an appropriate architecture. Over time, the continual
cycle of test-prune-reproduce will constrain the population to only those architectures that have
acquired the task most rapidly. Inappropriate networks will not be indefinitely competitive and
will be removed from the population eventually.

Complete network induction must be approached with respect to the complex interaction
between network topology, parametric values, and task performance. By fixing topology, gradient
descent methods can be used to discover appropriate solutions. But the relationship between net-
work structure and task performance is not well understood, and there is no "backpropagation"
through the space of network architectures. Instead, the network induction problem is approached
with heuristics that, as described above, often restrict the available architectures, the dynamics of
the search mechanism, or both. Artificial architectural constraints (such as "feedforwardness") or
overly constrained search mechanisms can impede the induction of entire classes of behaviors,
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while forced structural liberties (such as assumed full recurrence) may unnecessarily increase
structural complexity or learning time. By relying on a simple stochastic process, GNARL strikes
a middle ground between these two extremes, allowing the network's complexity and behavior to
emerge in response to the requirements of the task.
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